
Réfraction et dioptre plan

I. Marche réelle :

On cherche à construire un rayon réfracté selon la loi n_1 x $sin_{i1} = n_2$ x sin_{i2} de façon purement géométrique, sans rapporteur.

On choisit un facteur d'échelle « k » par exemple k = 4 cm

- -On trace le cercle C_1 de centre I et de rayon $R_1 = k \times n_1 = 4 \times 1,2 = 4,8$ cm
- -On trace le cercle C_2 de centre I et de rayon $R_2 = k \times n2 = 4 \times 1,8 = 7,2$ cm
- -On détermine P₁, intersection du rayon incident avec C₁.
- -La parallèle à (N) passant par P_1 coupe C_1 en C_2 .
- -(IP₂) est la direction du rayon réfracté.

Dans le triangle (I,P_1,K) .

*Relation n°1:

 $sin i_1 = KP_1/IP_1$

 $IP_1 = R_1 = k \times n_1 = = > \sin i_1 = KP_1/k \times n_1$

Dans le triangle (I,P_2,L) .

*Relation n°2:

$$sin i_2 = LP_2/IP_2$$

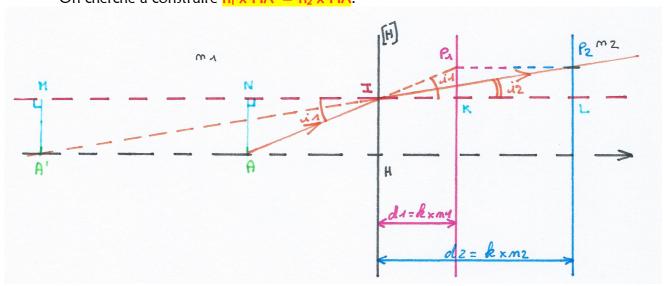
$$IP_2 = R_2 = k \times n_2 = = > \sin i_2 = LP_2/k \times n_2$$

1: $KP_1 = \sin i_1 \times kn_1$ 2: $KP_2 = \sin i_2 \times kn_2$

On obtient la relation finale suivante :

$$KP_1 = LP_2 ==> sin i_1 \times n_1 = sin i_2 \times n_2$$

II. Stigmatisme:


Sur le schéma « stigmatisme marche réelle », on constate que tous les rayons émis par P ne se croisent pas en un point unique.

Dans le cadre des conditions de GAUSS, on parle de stigmatisme approché. Les points conjugués A et A' sont reliés par la formule : $n_1 \times HA' = n_2 \times HA$.

Nous allons voir comment construire géométriquement cette relation. On parle alors de marche paraxiale.

III. Marche paraxiale : droites d'indices.

On cherche à construire $n_1 \times HA' = n_2 \times HA$.

-On trace une droite (d1) perpendiculaire à l'axe, distante du dioptre d'une valeur de : $d1 = k \times n1$.

-On trace une droite (d2) perpendiculaire à l'axe, distante du dioptre d'une valeur de : $d2 = k \times n2$.

-Le rayon incident coupe (d1) en P1.

-La parallèle à la normale qui passe par P1 coupe (d2) en P2.

-La droite (IP2) est la direction du rayon réfracté.

Dams le triangle (INA): tan
$$i_{A} = \frac{NA}{NI} = \frac{IH}{HA}$$

Dans le triangle (INA'): tan $i_{A} = \frac{NA}{II} = \frac{IH}{HA'}$

Dans le triangle (IKPa): tan $i_{A} = \frac{KPA}{IK} = \frac{KPA}{E\times MA}$

Dans le triangle (ILP2): tan $i_{A} = \frac{KPA}{E\times MA} = \frac{KPA}{E\times MA}$

Dans le triangle (ILP2): tan $i_{A} = \frac{LP2}{E\times E\times MA}$

Dans le triangle (ILP2): tan $i_{A} = \frac{LP2}{E\times E\times MA}$

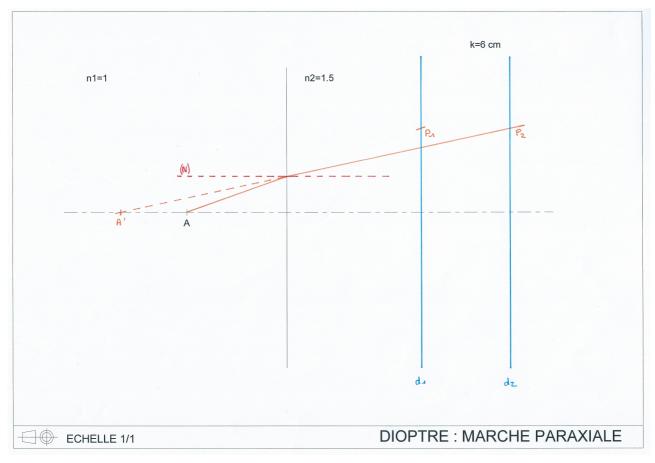
Dans le triangle (ILP2): tan $i_{A} = \frac{LP2}{E\times E\times EA}$

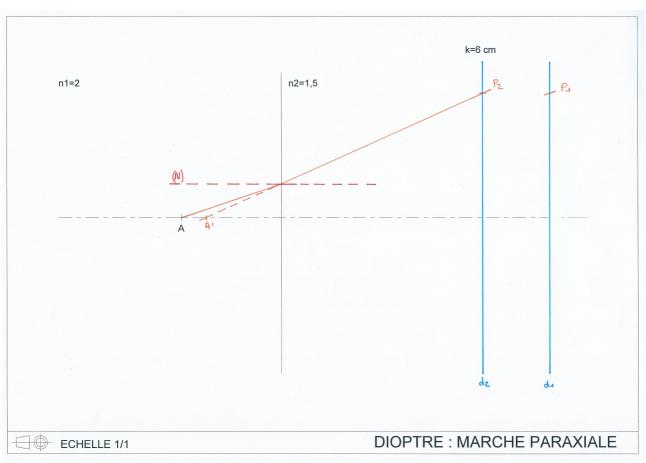
HH = HA' x tan $i_{A} = \frac{LP2}{E\times EA}$

The x tan $i_{A} = \frac{LP2}{E\times EA}$

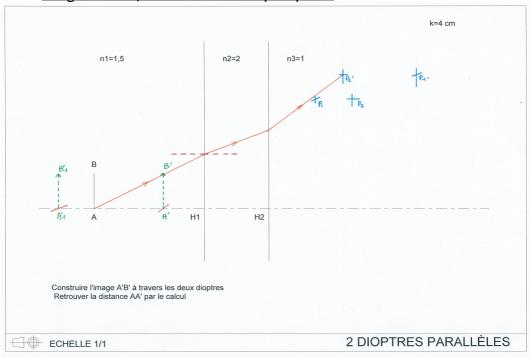
HA x tan $i_{A} = \frac{LP2}{E\times EA}$

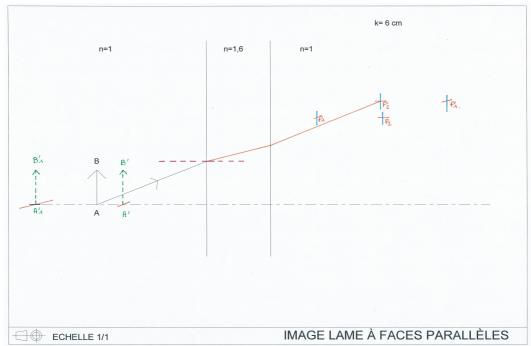
HA x tan $i_{A} = \frac{LP2}{E\times EA}$


HA x tan $i_{A} = \frac{LP2}{E\times EA}$


On obtient bien la relation voulue et cela quelque soit l'inclinaison du rayon incident, et sans faire d'approximation aux petits angles.

*Remarque IMPORTANTE!!


!! Cette méthode ne permet pas de déceler les réflexions totales !!

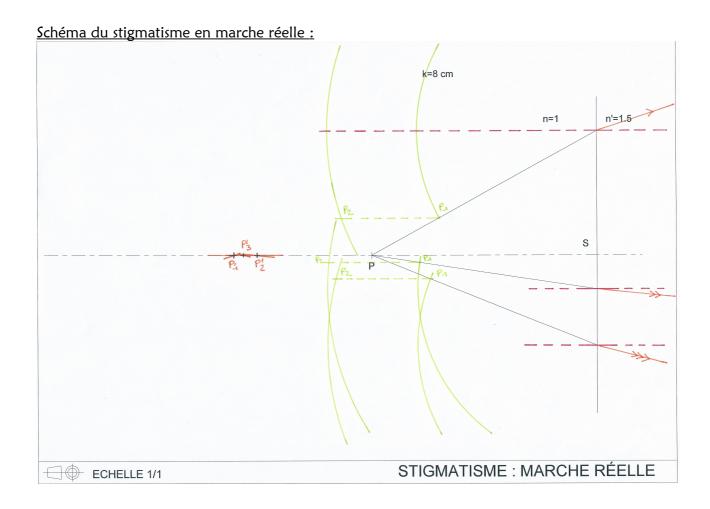

Quelques exemples de marches paraxiale à travers un dioptre :

IV. Image d'un objet à travers un dioptre plan :

Conclusion:

L'image A'B' de l'objet AB a exactement la même taille et la même orientation que ce dernier.

Le grandissement est :



Pour construire l'image d'un objet AB à travers un dioptre :

- 1. On détermine A'
- 2. On construit A'B' de même taille que l'objet de même sens.

Calculs:

2 Dia	thes	11:	i	AA'	= 9													
		,													1			
													2	=	2			
_ BR	ûne	des	i	mo	ge	٠.			-				1.3	=	1	_		
	ĀB	t	4	A	13%		t	S		n'e	′	-	LIF	=	-	0,0	26 1	7
												H	AH	2 =		3,0	35	m
	m ₄			m	2					m3			-	_				
							-		_					-				
							-						_					
mzx	HA _	MI	< HA	1			-							-	-			-
							-				-		-	-	-			
					_	account of	_						-	-				
A HA	AA			20 5	×	Hu	A	- 1	YX	H	A'a		-	-	-			
				2	×(-	0,0	26)	= /	1,5	×	HAA'A				-			
m	m ₂		_		i	40	1	-	2	×	A'4 HAA'4 (-0,06)							
					-		-			1.	5 m.			-			_	
					H	1A'	4	= -	0	<u>,08</u>	m.		-	-			_	
						-	-							-				
11-													-	-	-			
A! HZ	A'			m3	xt	12 A	-		20.2	X	H2A'			-	L 2			
				1 x	H2H	+ He	A'1)-		2	X	12 A'			-				-
MZ	m 3		1x(-	0,03	5+	(-0,0	3) =	- 2) X	Hz	. A'			-				
				H	2 A	-	-0	70	15									
				-	-		-	-		-			-			_		
				1	2 P	4=	-0	0,0	53	50	00		-	-				-
			-		-	-	-						-	-				
AA'-	AHIT	Hat	15 +	H2	A		-						-	-				
AA' = (2,06 +	0,03	35+	-0	100	5 t	5_						-					-
AA'-	0,03	75h	m.			-	-						-	-				
				-		-	-											
						-	-						-	-				
						+-	101						-	-				
NAGE	ANE	AFF	ACE:	5	14:		H.	= 1					-	-				
						-	-	-					-	-				
			0.0	1		-	-							-				
AA' =	e	(1-	- M	+)+			-						-	-				
		1			-	-	-						-	-	-			-
AA'=	0,0	35 (4 -	1	-	-	-							-				
			-	110	2	_	-						-	-				-
AA'-	0,0	135	m.															

